
Improving DNS Privacy
and: the Battle for the Namespace

Roland van Rijswijk-Deij

Today
• Who am I:

• Associate professor at University of Twente (EEMCS-DACS)

• Principal Scientist at NLnet Labs -- not for profit developing open
source software for core Internet protocols and real-world research on
Internet protocols

• Today:

• I will talk about privacy in the Domain Name System (DNS); my goal
is to show you how complex privacy can be in the context of real-
world Internet protocols

Introduction

• That the DNS has privacy issues is a public secret

• Protocol from 1980s with clear-text communication  
over UDP and TCP

• Snowden revelations just made this public secret  
very painful, as it turned out this was one of the  
Internet vulnerabilities being exploited en masse  
by intelligence services of the "Five Eyes"

IETF to the rescue!

• The IETF took action for many protocols
post-Snowden

• October 2014: establishment of the DNS
PRIVate Exchange (DPRIVE) working group

• Goal: analyse privacy issues in the DNS
and propose protocol changes to alleviate
these

First step: identifying problems

• RFC 7626* gives a comprehensive overview of privacy risks in the
whole DNS ecosystem

• Identifies all the points in the DNS ecosystem where privacy sensitive
information can leak

• Today we're going to focus on client to resolver traffic

*a -bis of this RFC is in the final phase of standardisation:  
https://tools.ietf.org/html/draft-ietf-dprive-rfc7626-bis-04

Recap: the DNS

Internet

DNS
resolver

authoritative
nam

e servers

A

B

C

You
Your ISP

Focus for today

Well actually...

Internet

DNS
resolver

authoritative
nam

e servers

A C

B

Public DNS service
- Google
- Cloudflare
- Quad9
- …

D

A*

Also going to talk 
about these folks

Behavioural measures

• There are two behaviour changes for DNS resolvers that help privacy

• QNAME minimisation, where resolvers limit what parts of a query string
are sent to authoritative name servers

• Caching measures, where resolvers can run parts of the name space
locally, to limit sending, e.g., queries to the root onto the Internet  
(not going to talk about these in detail)

QNAME minimisation
• In "classic" DNS, resolver sends full query name to every server in

hierarchy → to enhance privacy, only send necessary labels
Table 1: DNS queries and responses without (left) and with (right) qmin.

Standard DNS resolution qmin Reference (RFC7816)

a.b.example.com. A ! . com. NS ! .
com. NS . com. NS .

a.b.example.com A ! com. example.com NS ! com.
example.com NS com. example.com NS com.

a.b.example.com A ! example.com. b.example.com NS ! example.com.
a.b.example.com A example.com. b.example.com NS example.com

a.b.example.com NS ! example.com.
a.b.example.com NS example.com

a.b.example.com A ! example.com.
a.b.example.com A example.com

This reference algorithm, however, faces two challenges on the real Internet:
First, it does not handle configuration errors in the DNS well [26]. E.g., in case
b.domain.example does not have any RRs but a.b.domain.example does, a name
server should respond with NOERROR for a query to b.domain.example [8], but
in fact often responds with NXDOMAIN, or another invalid RCODE. This would
force resolvers that conform to the standard to stop querying and thereby not
successfully resolve the query. Also, operators report other issues, such as name
servers that do not respond to NS queries, which would break qmin as well [25].

Second, qmin can lead to a large number of queries. For example, a name with
20 labels would make the resolver issue 21 queries to authoritative name servers,
causing excessive load at the resolver and authoritative. Attackers can abuse this
for DoS attacks by querying excessively long names for victim domains.
Both of these issues led resolver implementors to modify their qmin implemen-
tations, as well as adding so called “strict” and “relaxed” modes, which we
investigate in Subsection 3.2 and Section 5.

As of October 2018, three major DNS resolvers support qmin. Unbound
supports qmin since late 2015 and turned relaxed qmin on by default in May
2018 [25]. Knot resolver uses relaxed qmin since its initial release in May 2016 [13],
and the recursive resolver of BIND supports qmin and turned the relaxed mode
on by default in July 2018 [23]. Another frequently used resolver, PowerDNS
Recursor, does not support qmin yet [9].

Related Work: Hardaker et al. [19] showed that root servers receive a consid-
erable amount of privacy-sensitive query names, and propose using local instances
of root servers to alleviate this issue. Imana et al. [22] study this aspect from a
broader perspective, covering all name servers above the recursive resolver, and
report similar privacy issues.

Schmitt et al. [32] propose Oblivious DNS, an obfuscation method introducing
an additional intermediate resolver between recursive resolver and authoritative
name servers. Oblivious DNS prevents the additional resolver from learning the
user’s IP address and the recursive resolver from learning the query name.

QNAME minimisation
• QNAME minimisation is seeing quite a bit of deployment already

• Supported by e.g. 1.1.1.1 and 9.9.9.9 (among others), but also e.g.
SURFnet (ISP for Dutch universities)

DNS over TLS
• RFC 7858: simple idea, let the stub talk to the recursive over a TLS

connection

• Raises some issues:

• TCP + TLS handshake overhead 
(partially alleviated by TCP Fast Open and TLS Session Resumption)

• Resource consumption on the recursor is a potential issue  
(TCP buffers, TLS state, ...)

• Generally speaking, though, works quite well

Padding
• An interesting aspect of encrypting DNS traffic is

that padding may be required

• Otherwise, the size of queries and responses can
still be used to profile users!

• EDNS0 padding allows stub resolvers to pad
requests and recursors that support it must also
pad responses if the query was padded

• There are multiple approaches to padding; block-
length padding seems the most sensible

(plot courtesy of Daniel Kahn Gillmor,
based on data from SURFnet)

Issues in DNS over TLS
• Encrypting DNS traffic means some on-path security monitoring will no

longer work; requires a shift from on-path (A) to on-resolver (B)

• Little experience in production with resource requirements of DoT

• Dedicated TCP port 853 may be blocked, making DoT unavailable

Internet

DNS
resolver

authoritative
nam

e servers

A

B

DoT implementation status
• DNS over TLS is already well-supported in recursors; all the popular

resolver implementations support it  
(Unbound, BIND, Knot Resolver, PowerDNS Recursor)

• Client support jumped with the advent of  
Android P (DoT support, enabled by default)

• Other end users can use, e.g. getDNS Stubby

• Service providers also widely support it 
(e.g. all public cloud resolvers)

Next steps in DoT

• Improve performance by supporting, e.g., out-of-order processing

• More support in built-in system stub resolvers (slowly arriving, e.g.,
systemd-resolved now has support)

• Also use TLS on recursor to authoritative path; but how do we make
this work? How to build the trust relationship (is it even possible/
necessary?)

Privacy conscious monitoring

• Remember that encrypting traffic makes monitoring harder

• In 2018/2019, we developed a potential solution to this:  
use of so-called Bloom Filters

• Tested in production at SURFnet (national research network in NL)

Bloom Filters
• Developed in the 1970s to speed up database lookups

• Highly efficient, insertion and lookup are ~𝒪(1)

• Bloom Filters are like a set with a probabilistic membership test

• For a given Bloom Filter 𝐵 and an element 𝑛, we can test the following:

n 2 B?
no → 𝑛 is guaranteed not to be in 𝐵

yes → 𝑛 is highly likely in 𝐵, with a
 small probability 𝑝ε of this being 
 a false positive

Bloom Filters
www.example.com

a029e8a9 c3faa9f8 cb745caa 8136503e 3a6dccaa c9f4c130 574c0e58 7235970e

(set of) hash function(s)

index #1 index #2 index #3 index #4 index #5 index #6 index #7 index #8

set bits to 1 in bit array using indices

Bloom Filters
1

0

0

1

1

0

1

1

www.example.com

www.example.org

true-negative.net

false-positive.org

set
elements

look up
elements

The idea
• Insert all queries from clients of a resolver into a Bloom Filter

• Then, we can check if a name was queried for, but not by whom and also not
exactly when; this is sufficient for network-level threat monitoring

• Privacy properties of Bloom Filters:
• Non-enumerable
• By mixing queries from many users in a single filter, tracking becomes harder
• Due to mathematical properties of Bloom Filters, we can combine different

filters, so we can further aggregate data over time (making it even harder
to track user)

Real-world tests
• We tested this for three weeks on busy DNS resolvers at SURFnet

• We studied three use cases:

• Detection of so-called "Booters"

• Hits on e-mail blacklists

• Hits of high-value indicators-of- 
compromise for the so-called 
National Detection Network

0

2 K

4 K

6 K

Jul 01 Jul 08 Jul 15 Jul 22
Time

Q
ue

rie
s

pe
r S

ec
on

d

Number of DNS Queries Over Time

National Detection Network
• NDN is managed by the Dutch National Cyber Security Centre (NCSC)

and is supposed to have "high value" indicators-of-compromise  
(from e.g. intelligence services)

• SURFnet could previously not monitor 
for threats reported in NDN because  
monitoring DNS traffic was considered  
too privacy sensitive

• With Bloom Filter approach it was now possible, and we found actual
compromises (e.g. WannaCry infected machine)

0

10

20

30

40

50

Jun 30 Jul 02 Jul 04 Jul 06 Jul 08 Jul 10 Jul 12 Jul 14 Jul 16 Jul 18 Jul 20 Jul 22
Time

N
um

be
r o

f t
hr

ea
ts

 o
cc

ur
re

d

Future of Bloom Filter solution

• First version of code already released as open source 
https://github.com/SURFnet/honas

• SURFnet is planning to take this into production

• Future integration in NLnet Labs open source software  
to make this approach more widely available and  
easy to deploy

• Proof that security and privacy can go hand in hand!

Privacy-Conscious Threat Intelligence Using
DNSBLOOM

� Roland van Rijswijk-Deij⇤†, Gijs Rijnders‡§, Matthijs Bomhoff§ and Luca Allodi‡
⇤University of Twente, †NLnet Labs, §Tesorion, ‡Eindhoven University of Technology

r.m.vanrijswijk@utwente.nl, gijs.rijnders@tesorion.nl, matthijs.bomhoff@tesorion.nl, l.allodi@tue.nl

Abstract—The Domain Name System (DNS) is an essential

component of every interaction on the Internet. DNS translates

human-readable names into machine readable IP addresses.

Conversely, DNS requests provide a wealth of information about

what goes on in the network. Malicious activity – such as

phishing, malware and botnets – also makes use of the DNS.

Thus, monitoring DNS traffic is essential for the security team’s

toolbox. Yet because DNS is so essential to Internet services,

tracking DNS is also highly privacy-invasive, as what domain

names a user requests reveals their Internet use. Therefore, in

an age of comprehensive privacy legislation, such as Europe’s

GDPR, simply logging every DNS request is not acceptable.

In this paper we present DNSBLOOM, a system that uses

Bloom Filters as a privacy-enhancing technology to store DNS

requests. Bloom Filters act as a probabilistic set, where a mem-

bership test either returns probable membership (with a small

false positive probability), or certain non-membership. Because

Bloom Filters do not store original information, and because

DNSBLOOM aggregates queries from multiple users over fixed

time periods, the system offers strong privacy guarantees while

enabling security professionals to check with a high degree of

confidence whether certain DNS queries associated with malicious

activity have occurred. We validate DNSBLOOM through three

case studies performed on the production DNS infrastructure of a

major global research network, and release a working prototype,

that integrates with popular DNS resolvers, in open source.

Index Terms—DNS; privacy; measurement; GDPR; threat

detection; indicator-of-compromise

I. INTRODUCTION

In modern networks, there is a constant arms race between
network managers and miscreants that want to infiltrate the
network, to deploy botnets, to infect users with malware
or to phish their credentials. Consequently, network security
professionals need to have a well-stocked toolbox to combat
such adversaries. A well-known approach to threat detection
is to monitor Domain Name System (DNS) queries. The DNS
fulfills a key role for Internet services: it maps human-readable
names to machine-readable IP addresses. Because DNS is so
essential, malicious activity on a network oftentimes relies
on the DNS in some way. This can be either just to map
names to addresses, e.g., for URLs included in phishing e-
mails, or more active abuse of the DNS, for instance as a
command-and-control (C&C) channel for botnets.

A major problem with monitoring DNS queries on a network
is that this is also extremely privacy-invasive [1], [2]. Because
almost all network services rely on the DNS in some way,
recording what DNS queries a user performs is highly revealing

of their Internet use. In the age of ever stricter privacy
legislation – think, for example, of Europe’s General Data
Protection Regulation (GDPR) [3] – simply recording all DNS
traffic on a network is not considered proportional to the goal
of safeguarding network security. Given, however, how valuable
DNS query logs can be for network security, the following
question is worth asking: Can we track information about DNS

queries without compromising on user privacy?

In this paper we present DNSBLOOM, a system that uses
Bloom Filters [4] as a privacy enhancing technology to track
DNS queries. Bloom Filters were invented in the 1970s as a
time- and space-efficient means to index databases. They act
as a probabilistic set, where a membership test either confirms
certain non-membership, or indicates probable membership
with a low probability of false positives. Bloom Filters rely
on hash functions to store information; as such, they never
store the original information. DNSBLOOM leverages this
property to protect user privacy while retaining useful detection
properties. In essence, when using DNSBLOOM, a security
professional can ask if a specific query for a known (malicious)
domain name has occurred, but cannot obtain a set of all

queries that occurred in the network. While this does not
allow for real-time monitoring of threats, it does allow for
tactical and strategic assessment of threats on a network: upon
observation of threats (known as indicators-of-compromise –
IoCs) using DNSBLOOM, security professionals can decide to
deploy targeted monitoring for specific threats, thus achieving
a proportional (e.g., in the sense of the GDPR) collection of
data. Moreover, DNSBLOOM allows operators to keep track of
DNS queries over time – in a privacy-conscious manner – and
to look back in time to see if emerging threats have already
occurred in their network.

To demonstrate its practical value, we validate the use
of DNSBLOOM in three real-world scenarios at a major
global research network. Furthermore, we implement a working
prototype that seamlessly integrates with all major open source
DNS resolver implementations. This prototype is released in
open source, to foster reproducibility and future research.
Paper organization — the remainder of this paper is organised
as follows. Section II provides background information on
Bloom Filters and IoCs. Section III introduces the approach
behind DNSBLOOM. In Section IV, we report on the evaluation
of the DNSBLOOM prototype. Section V reflects on the results
of our validation, and Section VI, discusses conclusions and
provides an outlook on future research.978-3-903176-15-7 © 2019 IFIP

paper: 
http://bit.ly/dnsbloom

http://bit.ly/dnsbloom

DNS over HTTPS
• Google had experimental "DNS over HTTPS" for ages; using their

own REST protocol, seemed abandoned (nobody used it)

• Then an IETF draft was published, and things started moving... FAST!

• DoH working group formed in  
September 2017, draft adopted  
October 2017, RFC 8484 officially  
published October 2018

• Incredibly fast for the IETF; lot of  
momentum behind this idea

DoH basic outline
• DoH simply sends Base64-encoded wire format DNS datagrams over

either HTTP GET or HTTP PUSH

• Two modes of operation:

• Dedicated: the service end point only  
functions as a DoH DNS resolver

• Mixed: DNS traffic is mixed into other HTTP traffic

• DoH server configured as a URI end point in the client
"Will it blend?"

DoH, where did it come from?
• Browser community wanted a web-style API to access DNS

• Argumentation browser community uses to push for it:

• Enhance privacy of browser users (encrypted transport, mixing with HTTP
traffic), arguing that adoption of e.g. DoT is too slow

• Port 443 does not get blocked, so can circumvent traffic filtering

• Improve user experience by reducing latency (really?!)

• Longer term: new features (JSON, Server Push, "resolverless")

Issues with DoH
• The rest of this talk will focus on issues with DoH in several

dimensions

• Why? Because DoH may have far-reaching consequences for the
DNS and the Internet

• Dimensions we will look at:

• Issues with privacy

• Issues for network operators

• Impact on the DNS name space

DoH and privacy
• Proponents push DoH arguing privacy; there are issues with that

claim

• DoH imports all of the privacy issues of the HTTP ecosystem into the
DNS resolution process (e.g. user agent profiling), which has sparked a
new Internet draft to address this

• DoH proponents appear to advocate that a "public trusted recursive
resolver" (TRR) is always better. This is simply not true in many cases,
consider e.g. EU citizens who are protected by the GDPR in relation to
their ISP.

NXDOMAIN hijacking

• Cited by DoH proponents as one of the "bad
things" operators do

• Fun fact 1: Deutsche Telekom has a bit of a bad
reputation in this regard 
but: GDPR + German law forbids monetising
surfing behaviour of customers

• Fun fact 2: This is how OpenDNS (now Cisco
Umbrella) initially made some of their money

DoH and privacy
• Mozilla is forcing DoH on users

• Mozilla has DoH support in Firefox since version 61,  
and enabled by default since version 69  
and their default TRR is currently Cloudflare

• Other browsers still taking a different approach; Chrome supports DoH since
version 78, but default is to only use DoH if the system-configured resolver is
whitelisted, Safari does not support DoH and Apple does not have plans yet

• Users are highly unlikely to turn this off if it's the default, experience with
users switching to 8.8.8.8 illustrates user inertia on this

Side step: user inertia viz. DNS
Graphs show Google Public DNS
use in the Ziggo network (big ISP
in NL) after a DoS attack on their
resolvers

Takeaway: once users change
their config, they never go back

(graph from [1])

[1] W.B. de Vries, R. van Rijswijk-Deij, P.T. de Boer, A. Pras. Passive Observations of a Large DNS Service: 2.5 Years in the Life of Google. In Proceedings of the 2018
Network Traffic Measurement and Analysis Conference (TMA 2018), Vienna, Austria, 26-29 June 2018.

"Disable Protection"

• Mozilla's approach for getting users
to enable DoH is pretty drastic

• Seriously, who is going to click
"Disable Protection"?

• Sure, Cloudflare may have a good
privacy policy now, but will it stay that
way?

DoH and performance
• Remember DoH proponents cite "performance" as reason to deploy?

• Firefox put "classic DNS" and DoH side-by-side (blog here)

• Here are the weasel words from the blog: 
"The slowest 20% of DNS exchanges are radically improved [...], while
the majority of exchanges exhibit a small tolerable amount of
overhead when using a cloud service. This is a good result."

• A "small tolerable amount of overhead" is an average of 6ms per
query!

https://blog.nightly.mozilla.org/2018/08/28/firefox-nightly-secure-dns-experimental-results/

DoH and network operators
• Where DNS over TLS may require operators to re-think security

monitoring, DoH makes it impossible

• Use of DoH circumvents any local security policy for the DNS

• Use of DoH is (almost) impossible to track, especially in mixed mode

• Security officers can look forward to having to wrangle browser
configs for managed desktops to disable DoH

• Prediction: Firefox will be banned on enterprise desktops

DoH and the DNS name space

• The biggest expected impact may not be the most obvious

• Remember that word "resolverless"  
a few slides back?

• Deployment of DoH may radically  
change the DNS name space  
as we know it

• Why?

DoH and the name space

• Browsers vendors and others have floated the idea of a "repository of
TRRs" for looking up specific parts of the name space

• Imagine a cabal very much like the CAB Forum for the X.509 Web PKI
deciding on a common TRRs in browsers (and in the future OSes too)

• Suddenly, they decide how names are resolved

• Who ever gave these folks the right to make this decision?  
What about the multi-stakeholder model for Internet governance?

DoH and the name space
• Imagine what this might mean!

• Parts of the name space are directly resolved through browser-
embedded TRRs, circumventing the current DNS hierarchy

• Next step: ICANN and the current DNS hierarchy become obsolete

• What about the "level playing field"? How do I claim my name?

• Facilitates further centralisation of the Internet, and even stronger
monopolies for certain big players

DoH and the name space

• Current DNS operators are heavily invested in an infrastructure that
does UDP really well, and also handles a bit of TCP

• For resolver operators, it is relatively simple to also support DoT

• DoH is a game changer, it has a relatively low bar of entry for players
that are already heavily invested in the HTTP ecosystem, but requires
major re-engineering for "traditional" DNS players

IETF ABCD

First draft with
potential consequences
for the name space

What will the future look like?

• No reason to attribute malice to the browser folks, they are probably
just trying to do what they think is "the right thing for privacy"

• That "right thing" may have unintended and irreversible side effects

• Because it is tilting thinking about how we view the name space

• This has not happened in earnest for over 30 years

• So we should be paying close attention!

What can/should you do?

• If you do not support DNS over TLS on your resolver: turn it on!

• Consider running a DNS over HTTPS server, to at least offer some
diversity

• This is not simple; there is insufficient open source code available
to do this -- at NLnet Labs we are working on this (next slide)

• GET INVOLVED IN THE DEBATE! If you agree DoH has issues, speak up!

DoH in open source

• NLnet Labs will support DoH in an upcoming Unbound release 
funded by Mozilla Open Source Support foundation

• We will also develop web server plugins for Apache and NGINX for
mixing DoH endpoints with regular web traffic 
funded by Comcast Innovation Fund

• Other DoH support: BIND, PowerDNS "dnsdist", Knot Resolver

Thank you!  
Questions?

F nl.linkedin.com/in/rolandvanrijswijk

L @reseauxsansfil

 r.m.vanrijswijk@utwente.nl  
 roland@nlnetlabs.nl

NLnet Labs is hiring!

We are looking for a C developer
for our open source DNS projects

